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Abstract:

This study was conducted under the USDA-Conservation Effects Assessment Project (CEAP) in the Cheney Lake watershed
in south-central Kansas. The Cheney Lake watershed has been identified as ‘impaired waters’ under Section 303(d) of the
Federal Clean Water Act for sediments and total phosphorus. The USDA-CEAP seeks to quantify environmental benefits of
conservation programmes on water quality by monitoring and modelling. Two of the most widely used USDA watershed-scale
models are Annualized AGricultural Non-Point Source (AnnAGNPS) and Soil and Water Assessment Tool (SWAT). The
objectives of this study were to compare hydrology, sediment, and total phosphorus simulation results from AnnAGNPS and
SWAT in separate calibration and validation watersheds. Models were calibrated in Red Rock Creek watershed and validated
in Goose Creek watershed, both sub-watersheds of the Cheney Lake watershed. Forty-five months (January 1997 to September
2000) of monthly measured flow and water quality data were used to evaluate the two models. Both models generally provided
from fair to very good correlation and model efficiency for simulating surface runoff and sediment yield during calibration
and validation (correlation coefficient; R2, from 0Ð50 to 0Ð89, Nash Sutcliffe efficiency index, E, from 0Ð47 to 0Ð73, root
mean square error, RMSE, from 0Ð25 to 0Ð45 m3 s�1 for flow, from 158 to 312 Mg for sediment yield). Total phosphorus
predictions from calibration and validation of SWAT indicated good correlation and model efficiency (R2 from 0Ð60 to 0Ð70,
E from 0Ð63 to 0Ð68) while total phosphorus predictions from validation of AnnAGNPS were from unsatisfactory to very
good (R2 from 0Ð60 to 0Ð77, E from �2Ð38 to 0Ð32). The root mean square error–observations standard deviation ratio (RSR)
was estimated as excellent (from 0Ð08 to 0Ð25) for the all model simulated parameters during the calibration and validation
study. The percentage bias (PBIAS) of the model simulated parameters varied from unsatisfactory to excellent (from 128 to
3). This study determined SWAT to be the most appropriate model for this watershed based on calibration and validation
results. Copyright  2008 John Wiley & Sons, Ltd.
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INTRODUCTION

The majority of the Kansas population (>70%) uses
surface water for drinking water and other daily uses
(Kansas Water Office [KWO], 2004); but 39% of assessed
river and stream miles and 76% of assessed lake
acreage in Kansas are impaired for one or more des-
ignated uses (KDHE, 2006). The Cheney Lake water-
shed has been identified as ‘impaired waters’ under
Section 303(d) of the Federal Clean Water Act for
sediments and total phosphorus. The TMDLs for the
Cheney Lake have been established by Kansas Depart-
ment of Health and Environment (KDHE) for phos-
phorus and sediments, which recommended a reduc-
tion of 45% for both pollutants (CLWMP, 2008). To
improve water quality through conservation practices,
it is essential to identify sources of contaminants and
quantify their contributions to water quality impairment.

* Correspondence to: Prem B. Parajuli, 2011D Throckmorton Plant Sci-
ence Center, Kansas State University, Manhattan, KS 66506. E-mail:
parajpb@ksu.edu.

Current water quality assessment techniques generally
include two methods: (a) water quality field monitoring
and (b) computer/mathematical modelling. Field moni-
toring is the most appropriate and reliable method to
support water quality assessment. However, it is laborious
and expensive. Computer/mathematical models provide
an alternative to monitoring that can save time, reduce
costs, and minimize the need for testing management
alternatives (Shirmohammadi et al., 2006).

Currently, numerous watershed models with various
capabilities and degrees of complexity are available. Sev-
eral of these models are used to estimate runoff, sediment
yield, and phosphorus loads, and many are applicable
to water quality goal development and implementation
(Borah et al., 2006). These models are being explored
as tools for developing management strategies to reduce
effects of non-point source pollution on water quality.
Choosing the appropriate model for a given applica-
tion and watershed is critical. Proper model calibration
and validation is necessary to ascertain accuracy and
reliability of results (Das et al., 2007a). Models are first
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calibrated against historically available data collected
from the study watershed. The calibrated model can then
be validated by comparing model predictions with mea-
sured data in other watersheds in the same geographic
region. Calibrating models in one watershed and vali-
dating them in another watershed enables evaluation of
model capability in different conditions and management
practices (Parajuli et al., 2007, 2008).

Because of their proven applicability at the watershed
scale in Kansas and other places; popularity and capa-
bility to predict flow, sediment, and nutrients, the Annu-
alized AGricultural Non-Point Source (AnnAGNPS) and
the Soil and Water Assessment Tool (SWAT) models were
chosen for this study. Refereed AnnAGNPS applications
are predominantly for sites in the USA (Yuan et al.,
2001, 2002; Polyakov et al., 2007); however, applications
in other countries also have been reported, e.g. Aus-
tralia (Baginska et al., 2003), China (Hong et al., 2005),
Canada (Das et al., 2006), and Belgium (Licciardello
et al., 2007). AnnAGNPS has been calibrated, validated,
and applied for runoff and sediment yield losses from
watersheds in different geographic locations, conditions,
and management practices (Gebremeskel et al., 2005;
Das et al., 2007a; Sadeghi et al., 2007, Licciardello et al.,
2007).

Refereed applications of the SWAT model are numer-
ous, and SWAT has been implemented internationally,
e.g. Greece (Gikas et al., 2006), Ireland (Nasr et al.,
2007), and Switzerland (Abbaspour et al., 2007). SWAT
has been calibrated, validated, and applied for runoff,
sediment yield and total phosphorus losses from water-
sheds in different geographic locations, conditions, and
management practices (Saleh et al., 2000; Spruill et al.,
2000; Santhi et al., 2001; Kirsch et al., 2002; Van Liew
et al., 2003; White et al., 2004; Qi and Grunwald, 2005;
White and Chaubey, 2005; Wang et al., 2006; Jha et al.,
2007; Gassman et al., 2007; Parajuli et al., 2007).

Limited research has been performed comparing
AnnAGNPS and SWAT models for predicting monthly
flow, sediment yields, and total phosphorus. Sadeghi
et al. (2007), applied AnnAGNPS and SWAT models in
a coastal plain watershed, Choptank River, Maryland,
which is also a USDA-CEAP watershed. Portions of the
watershed were impaired due to high levels of nutri-
ents and sediment. They used five years (1991–1995) of
detailed observed flow and water quality data to provide
baseline calibration and validation for the two models. In
their study, the calibrated AnnAGNPS and SWAT models
performed fair to good (Parajuli, 2007) in terms of model
correlation coefficient (R2) and Nash Sutcliffe efficiency
index (E) when compared with observed data (R2 D 0Ð51,
E D 0Ð49 for AnnAGNPS and R2 D 0Ð50, E D 0Ð34 for
SWAT). They did not report model performance during
model validation. The sediment yield and total phospho-
rus losses from the watershed were not evaluated.

Das et al. (2007a) compared performances of AnnAG-
NPS and SWAT models in a watershed in Ontario,
Canada. They used ten years (1991–2000) of monthly
observed flow data to provide baseline calibration

(1991–1995) and validation (1996–2000) for the two
models. In their study, the AnnAGNPS and SWAT model
demonstrated good to very good (Parajuli, 2007) model
efficiency for flow when compared with observed data
during the calibration (E D 0Ð79 for AnnAGNPS and E D
0Ð70 for SWAT) and validation (E D 0Ð69 for AnnAG-
NPS and E D 0Ð57 for SWAT) period. For sediment yield
they used monthly estimated sediment yield data to com-
pare with models simulated results for the calibration and
validation period. AnnAGNPS and SWAT showed fair to
good (Parajuli, 2007) model efficiency during calibration
(E D 0Ð53 for AnnAGNPS and E D 0Ð41 for SWAT) and
validation (E D 0Ð35 for AnnAGNPS and E D 0Ð24 for
SWAT) periods. They did not report model performance
using other statistical parameters such as R2, root mean
square errors (RMSE), etc.

The USDA-Conservation Effects Assessment Project
(CEAP) within the USA funded more than 13 individ-
ual CEAP projects using models to evaluate best man-
agement practices (BMPs). Most of the CEAP projects
in the USA use the SWAT model for their watershed
water quality studies. The Cheney Lake watershed (CLW)
has records of using a single event based Agricultural
Non Point Source (AGNPS) model (Bhuyan et al., 2003)
and AnnAGNPS model (Lyle F., personal communica-
tion, 2007) in some of the sub-watersheds, including Red
Rock Creek. However, the SWAT model, which is one
of the currently available and popularly applied water-
shed water quality modelling tools, has not been applied
to evaluate model performances in any of the CLW sub-
watersheds. It is important to test the AnnAGNPS and
SWAT models to compare their performances to select
an appropriate model for the conservation effects evalua-
tion of the CLW because choosing an appropriate model
might affect BMPs selection decision making.

The objectives of this research were to (i) compare
AnnAGNPS and SWAT model simulation results for sur-
face flow, sediment yield, and total phosphorus, and (ii)
determine the most appropriate model for this watershed
based on calibration and validation results. This study
is unique in that it compares model performance in two
separate, but similar, watersheds.

METHODS AND MATERIALS

Study area

Red Rock Creek watershed and Goose Creek water-
shed, two sub-watersheds within the Cheney Lake water-
shed located on the North Fork of the Ninnescah River
(HUC 11 030 014) in south-central Kansas, were selected
for this project due to their similar spatial and land
use characteristics and history of water quality data.
Cheney Lake, the primary receiving water in the water-
shed and primary drinking water source for the City of
Wichita, KS, has been identified as ‘impaired waters’
under Section 303(d) of the Federal Clean Water Act due
to high levels of sediment and total phosphorus trans-
port to the lake. The Kansas Department of Health and
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Environment (KDHE) has set TMDLs for eutrophication
and silt for Cheney Lake (KDA, 2004; KDHE, 2004).
In recent years, a significant number of state and fed-
eral incentive programmes have been implemented for
water quality improvement in the Cheney Lake water-
shed. This watershed is part of the USDA Conservation
Effects Assessment Project (CEAP), which seeks to quan-
tify environmental benefits of conservation programmes.

Models were calibrated in the Red Rock Creek water-
shed and validated in the Goose Creek watershed.
Red Rock Creek watershed (Figure 1), located in Reno
county, is of area 136 km2 with an average elevation
of 475 m. Land uses in the study area include grass-
land (32%), cropland (63%), woodland (4%), and 1%
others (water, urban). Fine-loamy textured soils are pre-
dominant in this watershed. Goose Creek watershed
(Figure 1), located in Kingman and Reno counties, is of
area 136 km2 with an average elevation of 505 m. Study
area land uses include grassland (29%), cropland (64%),
woodland (6%), and 1% others (water, urban). Fine-
loamy textured soils are predominant in this watershed.

Model description

Both AnnAGNPS and SWAT are daily time step,
watershed scale, pollutant-loading models developed to
simulate long-term runoff, sediment, nutrients, and pes-
ticide transport from agricultural watersheds (Table I)
These models differ in structure. While the SWAT model
uses hydrologic response units (HRUs), AnnAGNPS des-
ignates cells of various sizes; pollutants are routed from
these cells into the associated reaches, and the model
either deposits pollutants within the stream channel sys-
tem or transports them out of the watershed (Geter and
Theurer, 1998).

AnnAGNPS Model. The AnnAGNPS model was
designed by the USDA Agriculture Research Service
(USDA-ARS) and the USDA Natural Resources Con-
servation Service (USDA-NRCS) to evaluate NPS pol-
lution from agriculture-dominated watersheds. It is a
batch-process, continuous simulation, daily time step,
pollutant-loading model developed to simulate long-
term runoff, sediment, and chemical transport from
agricultural watersheds (Cronshey and Theurer, 1998;
Bingner and Theurer, 2003). It is a direct replace-
ment for the single event model, Agricultural Non-
Point Source (AGNPS) (Young et al., 1989), and retains
many features of AGNPS (Yuan et al., 2001). Unlike
AGNPS, AnnAGNPS divides the watershed into drainage
areas with homogenous land use, soils, etc. and inte-
grates these areas by simulated rivers and streams that
route runoff and pollutants from each area downstream.
The model uses and combines many modules of other
widely used models, such as Revised Universal Soil
Loss Equation (RUSLE) (Renard et al., 1997), Chemi-
cals, Runoff, and Erosion from Agricultural Management
Systems (CREAMS) (Knisel, 1980), Erosion Productiv-
ity Impact Calculator (EPIC) (Sharpley and Williams,
1990), and Groundwater Loading Effects on Agricul-
tural Management Systems (GLEAMS) (Leonard et al.,
1987).

AnnAGNPS allows users to select cell-based spatial
representation, which is characterized by similar land and
soil properties. Soil moisture conditions are calculated
with the Soil Conservation Service curve numbers (SCS-
CN) method, which serves as the basis for determining
surface and subsurface runoff quantities. AnnAGNPS
uses the RUSLE to calculate sediment delivered to a field
edge as a result of runoff from any type of precipitation.

Figure 1. Location map of the calibrated (Red Rock Creek) and validated (Goose Creek) watersheds

Copyright  2008 John Wiley & Sons, Ltd. Hydrol. Process. 23, 748–763 (2009)
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The Hydro-geomorphic Universal Soil Loss Equation
(HUSLE) is used to estimate the total sediment yield
leaving each field and entering the stream reach while
accounting for deposition. Output is expressed on an
event basis for selected stream reaches and as source
accounting (contribution to outlet) from land or reach
components over the simulation period.

SWAT model. The SWAT model is a product of
USDAnARS. SWAT is a physically based, semi-
distributed parameter, watershed-scale model that oper-
ates on a continuous daily time step. It simulates
hydrological processes, sediment yield, nutrient loss, and
pesticide losses into surface/groundwater and the effects
of agricultural management practices on water in large
ungauged watersheds (Arnold et al., 1998). SWAT incor-
porates the effects of weather, surface runoff, evapo-
transpiration, crop growth, irrigation, groundwater flow,
nutrient loading, pesticide loading, and water routing,
as well as the long-term effects of varying agricul-
tural management practices (Neitsch et al., 2002, 2005).
In the hydrologic component, runoff is estimated sepa-
rately for each sub-watershed of the total watershed area
and routed to obtain the total runoff for the watershed.
Runoff volume is estimated from daily rainfall using
modified SCS-CN and Green–Ampt methods. Sediment
yield is estimated from the Modified Universal Soil Loss
Equation (MUSLE). SWAT has been applied extensively
for streamflow, sediment yield, and nutrient modelling
(Gosain et al., 2005; Vache et al., 2002; Varanou et al.,
2002). The model requires input of DEM, land use, and
soils, as well as time series of climate data such as daily
precipitation and temperature.

In the SWAT model, the watershed is partitioned into
small sub-basins that are further subdivided into HRUs
based on unique land cover, soil, and topographic con-
ditions. Such divisions are necessary to consider accu-
rately possible effects of spatial variations in parameters
on hydrological processes, sediment, and nutrient sim-
ulations. The hydrology component of the model cal-
culates a soil water balance at each time step based
on daily amounts of precipitation, runoff, evapotranspi-
ration, percolation, and baseflow. Sediment yield from
each sub-basin or HRU is computed with the MUSLE.
The MUSLE approach of estimating sediment yield
makes the sediment computation a non-linear function
of the HRU area. Simulations are performed at the HRU
level and summarized in each sub-watershed. The sim-
ulated variables (water, sediment, nutrients, and other
pollutants) are routed through the stream network to
the watershed outlet. SWAT evolved from the Simu-
lator for Water Resources in Rural Basins (SWRRB)
and Routing Outputs to Outlet (ROTO) models. Other
models also influenced SWAT development including
CREAMS (Knisel, 1980), GLEAMS (Leonard et al.,
1987), and EPIC (Williams et al., 1984; Neitsch et al.,
2002).

Model input

Both AnnAGNPS and SWAT use various sets of
geospatially referenced data to create layers of infor-
mation to satisfy the necessary input parameters. United
State Geological Survey (USGS, 1999) 7Ð5-minute digital
elevation data (DEM) was used to delineate watershed
boundaries and topography. The Soil Survey Geographic
Database (SSURGO) was used to create a soil database
(USDA, 2005). Land use and land management were
estimated by analysing Landsat 5 satellite imagery using
stacked images from May and August of 1997 for major
crop types and unsupervised classification techniques
within ArcView Image Analysis with ground truth verifi-
cation using Farm Service Agency records. Image Anal-
ysis in ArcView also is capable of performing the Nor-
malized Difference Tillage Index (NDTI) (band 5-band
7)/band 5Cband 7) function using Landsat 5 mid-infrared
bands 5 and 7. Once the NDTI function was completed,
results were separated into three crop residue covers:
high, medium and low. Using this information paired
with local knowledge, land use and land management
were classified into 24 classes with major land uses
including wheat, soybean, grain sorghum, corn, CRP,
forestland, pastureland, rangeland, urbanland, and water
(Lyle Frees, 1997, unpublished data). AnnAGNPS input
accepts five types of land use identifiers (cropland, pas-
ture, forest, rangeland and urban), and only the pre-
dominant land use and management are used to repre-
sent each AnnAGNPS cell. Hence, the land uses in the
sub-watershed were reclassified according to the model
requirement. Each land use type was included under a
land use identifier during input data preparation.

For the AnnAGNPS model, a threshold critical source
area (CSA) of 100 ha and a minimum source channel
length (MSCL) of 130 m were used to generate spatially
variable stream network parameters. AnnAGNPS divided
the calibrated watershed into 169 cells. A MSCL of
130 m is a default value given in the model, but the
CSA value was changed to 100 ha, which represents less
than 1% of the calibration watershed area (13 600 ha
or 136 km2) as similar to the SWAT model threshold
area. The dominant soil and land use for each cell were
determined from the soil and land use shape files over the
delineated sub-watershed. For the SWAT model, default
threshold critical source area was used, which divided
the calibration watershed into 12 sub-basins. The SWAT
model further considered spatial variability of parameters
within each sub-basin by means of HRUs.

Model calibration

Flow, and sediment yield-related model calibration
parameters were selected (Table II) based on previous
research (Das et al., 2007a; Parajuli et al., 2007; Sadeghi
et al., 2007; Wang et al., 2007). Flow calibration was
performed by adjusting the CN parameter. CN is a
soil moisture balance parameter that allows the model
to modify the soil moisture condition of the soil to
estimate surface runoff. As the value of CN is reduced,
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Table II. Model parameter test and adjustment during calibration

Parameters Default value Test range value Final value

Flow:
Curve Number (CN) in 73–83 73–83 77–79

AnnAGNPS and SWAT Cropland 83 74–83 78
Grassland 79 75–82 79
Woodland 73 73–80 77

Sediment:
USLE cover and management factor (C) in SWAT 0Ð03–0Ð20 0Ð03–0Ð50 0Ð03–0Ð20

Winter wheat 0Ð03–0Ð30 0Ð03
Grain Sorghum 0Ð20–0Ð50 0Ð2

Soybean 0Ð20–0Ð50 0Ð2
Corn 0Ð20–0Ð50 0Ð2

Manning’ss n EGs1 in AnnAGNPS 0Ð04 0Ð04–1Ð00 0Ð04

1 Ephemeral Gully.

the model allows less water to runoff from the surface.
Other parameters than CN factor may also effect flow
prediction but their effect is considered to be small; many
studies ranked CN as the most sensitive parameter (Arabi
et al., 2007; Das et al., 2007a; Feyereisen et al., 2007;
Parajuli et al., 2007; Sadeghi et al., 2007; Wang et al.,
2007). Red Rock Creek and Goose Creek contribute low
flow in various seasons, although they are considered
perennial streams. Baseflow separation analysis (Kyoung
et al., 2005; Eckhardt, 2005) in the Red Rock Creek and
Goose Creek watersheds indicated about 1Ð2% (weighted
average) base flow of the total direct flow. Other studies
confirmed similar results (Li et al., 2006) for these
watersheds.

Models were calibrated for sediment yield by adjusting
the Universal Soil Loss Equation crop cover management
factor (USLE C), one of the most widely used sediment
calibration factors (Parajuli, 2007). The USLE C factor is
defined as the ratio of soil loss from land cropped under
specified conditions to the corresponding loss from clean-
tilled, continuous fallow land (Wischmeier and Smith,
1978).

Monthly flow, sediment yield, and total phosphorus
data measured from the USGS gauge station for each
watershed were used to calibrate and validate the model.
Monthly measured data from January 1997 to Septem-
ber 2000 were used for model calibration and validation.
Model predictions were evaluated statistically with the
coefficient of determination (R2) and Nash–Sutcliffe Effi-
ciency Index (E) between measured values and model-
predicted values after each model run with changed
parameters. Model input parameters were continuously
modified during the calibration phase until simulated flow
and sediment yield gave results R2 ½ 0Ð5 and E ½ 0Ð5
(Ramanarayanan et al., 1997; Parajuli et al., 2006). Flow
calibration was determined first using all default param-
eters. The CN parameters were continuously modified
within the specified range of values during the calibra-
tion phase to find the local optimum value. The CN range
of 77–79 (77 for woodland, 78 for cropland, and 79 for
grassland) resulted in the best calibration for both models.

SWAT allows users to input initial SCS-CN for mois-
ture condition II in the management data. AnnAGNPS
allows users to input all CNs based on the soil hydrologic
group (A, B, C, and D). Initial AnnAGNPS model predic-
tions were made with the default RCN factor (retention
calibration factor) of 1Ð00, after which the model was
run automatically nine times using different RCN factors
(1Ð000–2Ð789).

The USLE C, default was given as 0Ð03 for winter
wheat and 0Ð20 for grain sorghum, soybean, and corn
crops. During calibration, the C factor was tested in the
range 0Ð03 to 0Ð30 for winter wheat and 0Ð20 to 0Ð50 for
grain sorghum, soybean, and corn crops. Values above
the default values were tested because the models were
underpredicting sediment yield. However, increasing the
C factors did not increase model efficiency for sediment
yield prediction.

Therefore, the default C factor given in the model
resulted in the best model efficiency, in this study. The
default USLE support practice factor (P) given in the
models (1Ð00) was tested in the range from 0Ð20 to 1Ð00
during model calibration. Models always underpredicted
sediment yields using both lower and upper P factors. The
P factor was fixed at 0Ð50, which generally represents
the current conditions of the watersheds. Terraces are
one of the conservation practices implemented in the
watersheds. P is defined as the ratio of soil loss with
a specific support practice to the corresponding loss with
up-and-down slope culture. Support practices include
contour tillage, strip cropping on the contour, and terrace
systems. Stabilized waterways for the disposal of excess
rainfall are a necessary part of each of these practices
(Wischmeier and Smith, 1978). No calibration parameters
were used to calibrate total phosphorus prediction. After
model calibration, input parameters were not changed
during the model validation process.

Management scenarios

Land in the CRP covers about 16% of the calibra-
tion watershed area. The CRP land (high, high terrace,
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medium, medium terrace, low, low terrace) was simu-
lated with five typical types of grass management: lit-
tle bluestem, big bluestem, Indiangrass, side oats, and
switchgrass, which represent the field conditions. These
five types of grasses have about equal cover in the
watershed. Grassland covers about 20% of the watershed
area and typically includes rangeland big bluestem (high,
medium, low). The CRP grasses are generally not fer-
tilized (Lisa French, Cheney Lake Watershed Inc., 2007,
personal communication).

A majority (¾64%) of the land use area in both water-
sheds is cropland. Grain sorghum and soybean are major
warm-season crops, and winter wheat is a primary cool-
season crop grown in a four-year rotation (Lisa French,
Cheney Lake Watershed Inc., 2007, personal communi-
cation). Typical planting and harvesting dates are 25 May
and 20 October for warm-season crops and 20 October
and 29 June for cool-season crops. Crop residue is left on
the ground between the crop periods. Sorghum, soybean,
and wheat are cultivated primarily with conventional and
conservation tillage systems. Primary herbicides used for
warm-season crops are Bicep II Magnum for sorghum
and Roundup for soybean; Finesse was used for win-
ter wheat. These methods apply to both calibrated and
validated watersheds. Woodlands cover about 4% of the
calibration watershed and about 6% of the validation
watershed land-use area. Model default parameters were
used for woodland areas assuming mixed forest trees in
the watersheds.

Weather and hydrologic data

Weather data, such as daily precipitation and daily
ambient temperatures, were extracted from the National
Climatic Data Center (NCDC). The SWAT model requires
daily precipitation, daily maximum and minimum tem-
peratures, daily solar radiation, daily wind speed, and
daily relative humidity. The AnnAGNPS model requires
daily precipitation, daily maximum and minimum tem-
peratures, daily dew point temperatures, daily sky cover,
and daily wind speed data. Daily precipitation data were
used from only one weather station (Hutchinson South)
for the calibration watershed and from two weather sta-
tions (USGS gauge 3 and Turon) for the validation
watershed. SWAT uses weather data from the nearest

weather station to its sub-watershed whereas AnnAG-
NPS uses a thiessen polygon average of the weather
data. Daily precipitation data for the calibration water-
shed was obtained from the Hutchinson south weather
station, which is located nearly in the middle of the water-
shed. The SWAT model fills in missing weather data with
data from the Wichita airport weather station (Sedgwick
County), which is located about 55 km southeast of the
calibration watershed.

Daily precipitation data for the validation watershed
were from USGS gauge 3 and Turon weather stations.
The USGS gauge 3 weather station is located at the mouth
of the Goose Creek watershed and Turon is located about
10 km from the watershed. To fill in missing data for the
validation watershed, the SWAT model used data from the
Pratt weather station (Pratt County), located about 31 km
south-west of the watershed. The 1997 to 2000 average
annual rainfall data measured for Hutchinson south was
813 mm (Figure 2a) and for USGS gauge 3 and Turon
was about 662 mm (Figure 2b). USGS gauge 3 weather
station had no rainfall data measured from October to
December, 2000.

Statistical analysis

SWAT and AnnAGNPS model responses for flow were
evaluated based on measured flow data from January
1997 to December 2000. This study used 45 months
of rainfall–runoff measured/observed events for both
watersheds. Statistical parameters used to evaluate the
relationship between measured and predicted flow, sedi-
ment yield, and total phosphorus include correlation coef-
ficient (R2), Nash–Sutcliffe efficiency index (E), root
mean square error (RMSE), RMSE–observations stan-
dard deviation ratio (RSR), and percentage bias (PBIAS).
The R2 value indicates the consistency with which mea-
sured versus predicted values follow a best fit line. If the
R2 values are less than or very close to zero, the model
prediction is considered unacceptable or poor. If the val-
ues are one, then the model prediction is perfect (Santhi
et al., 2001). However, R2 only describes how much of
the observed dispersion is explained by the prediction,
therefore R2 is not used alone.

E indicates the consistency with which measured
values match predicted values, or the fit of the data to a
linear 1 : 1 measured versus predicted best-fit line (Nash
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Figure 2. Daily rainfall data for (a) Red Rock Creek and (b) Goose Creek watersheds
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and Sutcliffe, 1970) and estimated using Equation (1). E
ranges from minus infinity (poor model) to 1Ð0 (perfect
model). For example, if the square of the differences
between the model predictions and the observations is
as large as the variability in the observed data, then
E D 0Ð0; if it exceeds it, then E < 0Ð0 (i.e. the observed
mean is better than the predictor). Thus, a value of
zero for E indicates that the observed mean, O, is as
good as a predictor as the model, while negative values
indicate that the observed mean is a better predictor
than the model. E has been widely used to evaluate
the performance of hydrologic models (Wilcox et al.,
1990). A limitation of E is the fact that the differences
between the observed and predicted values are calculated
as squared values. As a result larger values in a time
series are strongly overestimated whereas lower values
are neglected (Legates and McCabe, 1999).

E D 1 �

n∑
iD1

�Oi � Pi�
2

n∑
iD1

�Oi � O�2

�1�

where O D observed value and P D predicted value. The
over-bar denotes the mean (observed or predicted) for the
entire time period of the evaluation.

RMSE summarizes the average error between observed
and predicted variates using the same units as those
variates, and is estimated using Equation (2). The lower
RMSE the better the model performance, and a value of
zero represents perfect simulation of the observed data
(Chu and Shirmohammadi, 2004). RMSE summarizes the
mean difference in the units of observed and predicted
values. The use of absolute error measures using RMSE
provides an evaluation of the error in the units of the
variable. The RMSE indicates the bias (deviation of the
actual slope from the 1 : 1 line) compared with the random
variation that may occur (Willmott, 1984). RMSE is
biased when large outliers are present.

RMSE D

√√√√√√
n∑

iD1

(
Qpi � Qoi

)2

n
�2�

where RMSE D root mean squared error, Qpi D predicted
value for event i, Qoi D observed value for event i, and
n D number of events.

RSR is estimated as the ratio of the RMSE and
standard deviation of measured data using Equation (3).
RSR varies from the optimal value of 0, which indicates
zero RMSE or residual variation and therefore perfect
model simulation, to a large positive value. The lower
RSR, the lower the RMSE, and the better the model
simulation performance (Moriasi et al., 2007).

RSR D RMSE

STDEVobs
�3�

where RSR D RMSE–observations standard deviation
ratio, RMSE D root mean squared error, and STDEVobs

D standard deviation of measured data.
PBIAS measures the average tendency of the model-

predicted values to be larger or smaller than their
corresponding measured values. The optimal value of
PBIAS is 0Ð0, with low-magnitude values indicating
accurate model simulation. Positive values indicate model
underestimation bias, and negative values indicate model
overestimation bias (Gupta et al., 1999). PBIAS is the
deviation of data values being evaluated, expressed as a
percentage, which is calculated from

PBIAS D




n∑
iD1

(
Yi

obs � Yi
sim

) ð �100�

n∑
iD1

�Yi
obs�




�4�

where PBIAS D percentage bias, Yobs
i D observed value

for event i, and Ysim
i D predicted value for event i.

In this study, statistics using R2, E, RMSE, RSE, and
PBIAS values were considered. Model correlations and
efficiencies, as modified by Parajuli (2007) from Moriasi
et al. (2007), were classified as in Table III.

RESULTS AND DISCUSSION

Flow

Calibrated models for the Red Rock Creek water-
shed predicted mean monthly flow of the watershed

Table III. Classification of model efficiencies for the different pollutant parameters

Class R2, E
Flow, sediment, TP

RSR
Flow, sediment, TP

PBIAS
Flow

PBIAS
Sediment

PBIAS
TP

Excellent <0Ð90 0Ð00–0Ð25 < š 10 < š 15 < š 25
Very good 0Ð75–0Ð89 0Ð26–0Ð50 š11� š 15 š16� š 30 š26� š 40
Good 0Ð50–0Ð74 0Ð51–0Ð60 š16� š 25 š31� š 50 š41� š 60
Fair 0Ð25–0Ð49 0Ð61–0Ð70 š26� š 30 š51� š 60 š61� š 70
Poor 0Ð00–0Ð24 0Ð71–0Ð89 š31� š 35 š61� š 70 š71� š 80
Unsatisfactory <0Ð00 >0Ð90 ½ š 36 ½ š 71 ½ š 81

R2 D Coefficient of determination.
E D Nash sutcliffe efficiency index.
TP D Total phosphorus.
RSR D Root mean square error - observations standard deviation ratio.
PBIAS D Percent bias.
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with very good correlation and good agreement (R2 D
0Ð80, E D 0Ð69, RMSE D 0Ð38 for AnnAGNPS; R2 D
0Ð81, E D 0Ð56, RMSE D 0Ð45 for SWAT) between mean
monthly measured and mean monthly predicted flow val-
ues (Table IV, Figure 3). The SWAT model predicted
monthly flow (m3 s�1) estimated about 18% higher
RMSE than AnnAGNPS in the calibration watershed.
The calibrated models, when applied to the Goose
Creek watershed for validation, predicted mean monthly
flow with good correlation and fair agreement for

both models (R2 D 0Ð50, E D 0Ð47, RMSE D 0Ð26 for
AnnAGNPS; R2 D 0Ð62, E D 0Ð48, RMSE D 0Ð25 for
SWAT) (Table IV). The AnnAGNPS model predicted
monthly flow (m3 s�1) estimated about 4% higher RMSE
than SWAT in the validation watershed (Table IV). The
estimated RSR values for both AnnAGNPS and SWAT
model simulations during calibration and validation were
excellent (0Ð09–0Ð12). The calculated PBIAS values
for both models were unsatisfactory (PBIAS from 49
to �95), which means both models were biased to

Table IV. Estimated statistical parameters of model performance for calibration and validation watersheds

Class Calibration Validation

Slope Intercept R2 E RMSE RSR PBIAS Slope Intercept R2 NSE RMSE RSR PBIAS

AnnAGNPS:
Flow 0Ð54 �0Ð01 0Ð80 0Ð69 0Ð38 0Ð09 49Ð83 0Ð65 0Ð17 0Ð50 0Ð47 0Ð26 0Ð12 �40Ð35
Sediment 0Ð44 �3Ð64 0Ð83 0Ð60 230Ð00 0Ð10 57Ð70 0Ð70 43Ð67 0Ð62 0Ð64 312Ð00 0Ð19 �67Ð14
TP 0Ð90 385Ð08 0Ð60 0Ð32 704Ð00 0Ð13 �128Ð48 2Ð38 �55Ð50 0Ð77 �2Ð38 476Ð00 0Ð25 �117Ð33

SWAT:
Flow 1Ð08 0Ð25 0Ð81 0Ð56 0Ð45 0Ð10 �95Ð06 0Ð86 0Ð13 0Ð62 0Ð48 0Ð25 0Ð11 �46Ð62
Sediment 0Ð56 �1Ð41 0Ð89 0Ð73 186Ð00 0Ð08 45Ð02 0Ð40 46Ð58 0Ð72 0Ð61 158Ð00 0Ð10 9Ð65
TP 0Ð51 126Ð88 0Ð70 0Ð68 487Ð00 0Ð09 3Ð13 0Ð64 33Ð34 0Ð60 0Ð63 178Ð00 0Ð09 13Ð44

R2 D Coefficient of determination.
E D Nash sutcliffe efficiency index.
RSR D Root mean square error - observations standard deviation ratio.
TP D Total phosphorus.
PBIAS D Percent bias.
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Figure 3. Time series measured and models predicted monthly average flow from January 1997 to September 2000 for (a) Red Rock Creek and
(b) Goose Creek watersheds
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underpredict or overpredict flow for different months
of the simulation period. AnnAGNPS flow prediction
was determined to be less biased than SWAT during
model calibration (PBIAS: 50 versus �95) and validation
(PBIAS: �40 versus �46) study.

Although, AnnAGNPS and SWAT models predicted
surface runoff equally well in general for both calibration
and validation watersheds, AnnAGNPS slightly under-
predicted monthly surface flow compared with SWAT
during model calibration (slope: 0Ð54 versus 1Ð08) and
validation (slope: 0Ð65 versus 0Ð86). Model-predicted val-
ues of estimated slopes during model calibration and
validation indicated no-significant (P values <0Ð001 at
˛0Ð05) difference.

Bhuyan et al. (2003) applied a single event-based
AGNPS model in the Red Rock Creek watershed. The
single event-based AGNPS model systematically overes-
timated surface runoff, and the model had to be adjusted
for antecedent moisture condition (AMC) based on sur-
face runoff prediction. Compared with predictions by
Bhuyan et al. (2003), model predictions from the contin-
uous version of AnnAGNPS used in this study had better
correlation with observed values. Van Liew et al. (2003)
applied the SWAT model in the Delaware Creek water-
shed in Oklahoma, which has land-use conditions similar
to Red Rock Creek and Goose Creek watersheds, and

found R2 D 0Ð68 and E D 0Ð84 for mean monthly flow
prediction. Spruill et al. (2000) applied the SWAT model
in a small, central Kentucky watershed. The SWAT model
prediction had E values for monthly flows between 0Ð58
and 0Ð89. They did not use other statistical parameters as
used in this study, such as RMSE, RSR, and PBIAS.

Sediment yield

Calibrated AnnAGNPS and SWAT models for Red
Rock Creek watershed predicted monthly sediment yield
with very good correlation and good agreement (R2 D
0Ð83, E D 0Ð60, RMSE D 230 for AnnAGNPS; R2 D
0Ð89, E D 0Ð73, RMSE D 186 for SWAT) with mea-
sured mean monthly sediment yield data (Table IV,
Figure 4). The AnnAGNPS model-predicted monthly
sediment yield (Mg) estimated about 23% higher RMSE
than SWAT in the calibration watershed.

Both models showed decreased, but still good, cor-
relation and agreement (R2 D 0Ð62, E D 0Ð64, RMSE D
312 for AnnAGNPS; R2 D 0Ð72, E D 0Ð61, RMSE D 158
for SWAT) between mean monthly measured and mean
monthly predicted sediment yield values during vali-
dation in the Goose Creek watershed (Table IV). The
AnnAGNPS model predicted monthly sediment yield
(Mg) estimated about 97% higher RMSE than SWAT
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Figure 4. Time series measured and models predicted monthly average sediment yield from January 1997 to September 2000 for (a) Red Rock Creek
and (b) Goose Creek watersheds
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in the validation watershed (Table IV). The RSR val-
ues were estimated excellently when both AnnAGNPS
and SWAT model simulation results for the calibration
and validation watersheds were analysed. The estimated
PBIAS values using AnnAGNPS model simulation
ranged from fair to poor (PBIAS from 57 to �67)
whereas SWAT performance ranged from excellent to
good (PBIAS from 9 to 45) during model calibration and
validation.

Although AnnAGNPS and SWAT models predicted
sediment yield equally well in general, AnnAGNPS
slightly underpredicted sediment yield compared with
SWAT during calibration (slope: 0Ð44 versus 0Ð56), and
SWAT slightly underpredicted sediment yield compared
with AnnAGNPS during model validation (slope: 0Ð40
versus 0Ð70). However, model-predicted values for esti-
mated slopes during model calibration and validation
indicated no-significant (P values <0Ð001 at ˛0Ð05) dif-
ference.

Yuan et al. (2001) evaluated AnnAGNPS in the Mis-
sissippi Delta MSEA watershed. They used three years
of measured data to compare model-predicted sediment
yield from the watershed. The model-predicted monthly
sediment yield showed good correlation (R2 D 0Ð50)
with measured data. Das et al. (2007a), applied the
AnnAGNPS model in the Grand River Basin in Canada.
Their results demonstrated good agreement (E D 0Ð53)
between mean monthly observed and mean monthly
model-predicted sediment yield values during the model
calibration period. During the model validation period,
model efficiencies decreased (E D 0Ð35).

Santhi et al. (2001) calibrated and validated the SWAT
model in the Bosque River watershed in Texas. The
calibrated SWAT model showed E values ranging from
0Ð69 to 0Ð80 for monthly sediment yield. However, the
validated model had decreased E values (0Ð23 to 0Ð70)
for monthly sediment prediction compared with measured
data. Kirsch et al. (2002) calibrated the SWAT model
in the Rock River Basin watershed in Wisconsin. The
calibrated SWAT model for Yahara and Mendota sub-
watersheds in the Rock River Basin had E values of 0Ð75
for annual sediment prediction compared with measured
sediment data. They did not have enough sediment data
for model validation. Jha et al. (2007), applied the SWAT
model in the Raccoon River watershed in Iowa. The
SWAT model predicted sediment yield with good to
very good correlation and agreement (R2 D 0Ð55, E D
0Ð53) during the model calibration period based on the
performance ratings of Parajuli (2007). SWAT predictions
improved during the model validation period (R2 D 0Ð80,
E D 0Ð78). All of these studies calibrated and validated
models in the same watershed using different periods
of measured data using only two statistical parameters
(R2 and E). In the present study, which used separate
calibration and validation watersheds but the same time
period, model performance in the calibration watershed
was similar to or better than in the validation watershed
and used five statistical parameters.

Total phosphorus

The AnnAGNPS and SWAT models showed good
correlation and fair to good agreement (R2 D 0Ð60,
E D 0Ð32, RMSE D 704 for AnnAGNPS; R2 D 0Ð70,
E D 0Ð68, RMSE D 487 for SWAT) between predicted
and measured mean monthly total phosphorus during
model calibration (Table IV, Figure 5). The AnnAGNPS
model-predicted monthly total phosphorus (Kg) estimated
about 44% higher RMSE than SWAT in the calibra-
tion watershed. When both models were applied to the
Goose Creek watershed for validation, the AnnAGNPS
model predicted total phosphorus with good correlation
but unsatisfactory agreement (R2 D 0Ð77, E D �2Ð38,
RMSE D 476) for mean monthly total phosphorus. The
SWAT model consistently predicted total phosphorus
with good correlation and agreement (R2 D 0Ð60, E D
0Ð63, RMSE D 178) with measured mean monthly total
phosphorus values (Table IV). The AnnAGNPS model
predicted monthly total phosphorus (kg) estimated about
167% higher RMSE than SWAT in the validation water-
shed (Table IV). The estimated RSR values using both
AnnAGNPS and SWAT models were excellent (RSR
from 0Ð09 to 0Ð25). The calculated PBIAS values for the
AnnAGNPS model simulation results for both calibration
and validation study were unsatisfactory with overpredic-
tion bias (PBIAS from �117 to �128) whereas the SWAT
model demonstrated excellent performance with PBIAS
values from 3 to 13.

Several previous studies determined that the AnnAG-
NPS model overpredicted total phosphorus loss (Baginska
et al., 2003; Yuan et al., 2005; Das et al., 2007b). Yuan
et al. (2005), evaluated the AnnAGNPS model in the
Deep Hollow watershed of the Mississippi Delta Man-
agement Systems Evaluation Area project. Sensitivity
analyses of the phosphorus component in the model were
evaluated. AnnAGNPS overpredicted dissolved phospho-
rus loss (121%), still the model correlation of the simu-
lated monthly total phosphorus was very good compared
with the observed total phosphorus (R2 of 0Ð81), model
agreement was not reported. Das et al. (2007b) evalu-
ated the nutrient component of the AnnAGNPS model in
a watershed in Ontario, Canada. The model overpredicted
total phosphorus, which was reported to have very good
correlation and fair agreement (R2 D 0Ð82, E D 0Ð23).
None of these studies validated phosphorus prediction of
the AnnAGNPS model in either another watershed or for
a different simulation period. Yuan et al. (2005) reported
that all the forms and processes involved in the phospho-
rous cycle are not completely and scientifically simulated
by the AnnAGNPS model. Although the model calibra-
tion might improve some statistics of model output for
total phosphorus, further research and in-depth investiga-
tion on fate and transport of the phosphorus component of
the AnnAGNPS model is necessary (Yuan et al., 2005;
Das et al., 2007b). Our study found overprediction of
total phosphorus, which was attributed mainly to soluble
phosphorus loss.
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Figure 5. Time series measured and models predicted monthly average total phosphorus (TP) from January 1997 to September 2000 for (a) Red
Rock Creek and (b) Goose Creek watersheds

Santhi et al. (2001) calibrated and validated the SWAT
model in the Bosque River watershed in Texas. The cal-
ibrated SWAT model showed good agreement with E
values ranging from 0Ð53–0Ð70, for monthly mean total
phosphorus compared with mean monthly measured data.
The validated model had fair to good agreement, with
E values ranging from 0Ð39–0Ð72, for mean monthly
total phosphorus prediction compared with mean monthly
measured data. Several other studies successfully cali-
brated and validated the SWAT model for monthly total
phosphorus prediction (Saleh and Du, 2004; White and
Chaubey, 2005; Arabi et al., 2006; Bracmort et al., 2006;
Cheng et al., 2006; Tolson and Shoemaker, 2007). More
applications of SWAT are described in Gassman et al.
(2007).

Although no calibration parameters were used for
phosphorus calibration, the SWAT model uses the
QUAL2E stream flow process for model simulation,
which reduces the amount of phosphorus leaving the
watershed outlet or reach (Brown and Barnwell, 1987;
Neitsch et al., 2005). The SWAT model QUAL2E in-
stream process with default parameters demonstrated fair
to good model correlations and efficiencies in various out-
lets of the Upper Wakarusa watershed in Kansas (Parajuli,
2007). The AnnAGNPS model had no stream process
routines in its Input Editor. AnnAGNPS assumes that

organic phosphorus and insoluble inorganic phosphorus
are associated with the clay fraction of the soil and that
soil erosion is the mechanism transporting them from the
soil profile to the water bodies. However, studies show
that insoluble inorganic phosphorus, such as particulate
phosphorus, could be lost through biological processes
(Stuck et al., 2001).

CONCLUSIONS

The objective of this research was to compare AnnAG-
NPS and SWAT model simulation results for surface flow,
sediment yield, and total phosphorus using 45 months
(January 1997 to September 2000) of measured data. The
uniqueness of this study lies in its comparison of model
performance in two separate yet similar watersheds. It is
important to choose appropriate model to prioritize criti-
cal areas in the watershed.

According to the classifications of Parajuli (2007), this
study concluded that both AnnAGNPS and SWAT mod-
els performed with fair to very good correlation (R2

from 0Ð50 to 0Ð89) and fair to good agreement (E from
0Ð47 to 0Ð73) for surface flow and sediment yield when
comparing model predictions with measured data during
calibration and validation. SWAT also performed consis-
tently well in terms of correlation (R2 from 0Ð66 to 0Ð77)
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and agreement (E from 0Ð63 to 0Ð68) for total phosphorus
calibration and validation. Total phosphorus predictions
during validation of AnnAGNPS were unsatisfactory to
good (R2 from 0Ð60 to 0Ð77, E from �2Ð38 to 0Ð32) with
RMSE about 167% higher than that for SWAT for mean
monthly total phosphorus prediction. AnnAGNPS over-
predicted total phosphorus (PBIAS from �117 to �128),
which was attributed mainly to soluble phosphorus loss.
Because the KDHE has set TMDLs for eutrophication
and silt for Cheney Lake, SWAT’s ability to predict phos-
phorus in conjunction with BMPs is essential.
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